Thursday, October 4, 2012

Anonymous asked: What are the 9 types of energy

Hey there,

Why don’t you check out this earlier post. It should give you a brief intro to the types of energy, the law of conservation of energy, efficiency and Sankey diagrams!

Hopefully that will help you out and thank you for the question!

As always, feel free to submit any other inquiries to our ask.

Monday, July 30, 2012
Demons in the History of Science
Part one of two: Laplace’s Demon
Some might say that the modern day physicists have it easy; they can appeal to the public with their stories of eleven-dimensional universes, time travel, and stories of a quantum world that is stranger than fiction. But the basis of such appeal remains the same as the appeal for pursuing science always was and will be: a greater understanding of the environment, ourselves, and knowledge itself.
Just like Schrödinger’s cat, a popular thought experiment by famous physicist Erwin Schrödinger, Laplace’s Demon and Maxwell’s Demon are two other thought-experiments in scientific thinking which are important for what they reveal about our understanding of the universe. It may only interest you to learn of these thought-experiments for the sake of reinforcing the philosophical relevance and beauty that science has always sought to provide.
Jim-Al Khalili, author of Quantum: A Guide for the Perplexed, affirms that fate as a scientific idea was disproved three-quarters of a century ago, referring to the discoveries of quantum mechanics as proof, of course. But what does he mean when he says this? Prior to such discoveries, it may have been okay to argue for a deterministic universe, meaning that scientists could still consider the idea of a world in which one specific input must result in one specific output and thus the sum all these actions and their consequences could help “determine” the overall outcome, or fate, of such a world.
Pierre-Simon Laplace, born on March 23, 1794, was a French mathematician and astronomer whose work largely founded the statistical interpretation of probability known as Bayesian Probability. He lived in a world before Heisenberg’s Uncertainty Principle and Chaos Theory and thus he was allowed to imagine such a deterministic universe:

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.
Laplace, A Philosophical Essay on Probabilities

Laplace thought about what it would be like if it were possible to know the positions, masses, and velocities of all the atoms in existence and hypothesized a being, later known as Laplace’s Demon, which would be able to know such information and such calculate all future events. 
With our knowledge of physics, The Heisenberg Uncertainty Principle and Chaos Theory, such a being could not exist because such information about atoms cannot be observed with enough precision to calculate and predict future events. (By the way, “enough” precision means infinite precision!) This might be good news for those who believe in free will as its concept would not be permitted in a deterministic universe governed by Laplace’s demon. 
Interestingly enough, The Heisenberg Uncertainty Principle and Chaos Theory are not the only restrictive challenges that scientists have faced in trying to understand the properties and bounds of our universe. The Second Law of Thermodynamics is also of concern to scientists and philosophers alike, as we will learn with the birth of another mind-boggling demon.

Demons in the History of Science

Part one of two: Laplace’s Demon

Some might say that the modern day physicists have it easy; they can appeal to the public with their stories of eleven-dimensional universes, time travel, and stories of a quantum world that is stranger than fiction. But the basis of such appeal remains the same as the appeal for pursuing science always was and will be: a greater understanding of the environment, ourselves, and knowledge itself.

Just like Schrödinger’s cat, a popular thought experiment by famous physicist Erwin Schrödinger, Laplace’s Demon and Maxwell’s Demon are two other thought-experiments in scientific thinking which are important for what they reveal about our understanding of the universe. It may only interest you to learn of these thought-experiments for the sake of reinforcing the philosophical relevance and beauty that science has always sought to provide.

Jim-Al Khalili, author of Quantum: A Guide for the Perplexed, affirms that fate as a scientific idea was disproved three-quarters of a century ago, referring to the discoveries of quantum mechanics as proof, of course. But what does he mean when he says this? Prior to such discoveries, it may have been okay to argue for a deterministic universe, meaning that scientists could still consider the idea of a world in which one specific input must result in one specific output and thus the sum all these actions and their consequences could help “determine” the overall outcome, or fate, of such a world.

Pierre-Simon Laplace, born on March 23, 1794, was a French mathematician and astronomer whose work largely founded the statistical interpretation of probability known as Bayesian Probability. He lived in a world before Heisenberg’s Uncertainty Principle and Chaos Theory and thus he was allowed to imagine such a deterministic universe:

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.

Laplace, A Philosophical Essay on Probabilities

Laplace thought about what it would be like if it were possible to know the positions, masses, and velocities of all the atoms in existence and hypothesized a being, later known as Laplace’s Demon, which would be able to know such information and such calculate all future events. 

With our knowledge of physics, The Heisenberg Uncertainty Principle and Chaos Theory, such a being could not exist because such information about atoms cannot be observed with enough precision to calculate and predict future events. (By the way, “enough” precision means infinite precision!) This might be good news for those who believe in free will as its concept would not be permitted in a deterministic universe governed by Laplace’s demon. 

Interestingly enough, The Heisenberg Uncertainty Principle and Chaos Theory are not the only restrictive challenges that scientists have faced in trying to understand the properties and bounds of our universe. The Second Law of Thermodynamics is also of concern to scientists and philosophers alike, as we will learn with the birth of another mind-boggling demon.

Thursday, July 5, 2012

Two days ago, the CERN team announced that they had found a new particle whose properties are consistent with the long sought-after Higgs Boson’s. Whether or not it is the elusive boson however, is still to be determined by further research. To read more about the event, follow this link to the new BBC article.

If you have no clue what this is about, the above video is a quick and nice introduction to the Higgs Boson submitted by one of our followers, the lovely oh-yeah-and-what. Thanks for the awesome submission!
SIWS loves feedback from followers and we’ll do our best to respond. If you have any questions, ideas, or concerns, feel free to drop us a message, email us at sayitwithscience@gmail.com or like and post on our Facebook page. You can even make a submission post and we might publish it and credit you, like we did with this one!
Take care and happy science-ing! 

Friday, June 29, 2012
Hey everyone! The Say It With Science team invites you to “like” our new Facebook page.
Thanks for following!

Hey everyone! The Say It With Science team invites you to “like” our new Facebook page.

Thanks for following!

Thursday, June 28, 2012
Maximum Entropy Distributions



Entropy is an important topic in many fields; it has very well known uses in statistical mechanics, thermodynamics, and information theory. The classical formula for entropy is Σi(pi log pi), where p=p(x) is a probability density function describing the likelihood of a possible microstate of the system, i, being assumed. But what is this probability density function? How must the likelihood of states be configured so that we observe the appropriate macrostates?



In accordance with the second law of thermodynamics, we wish for the entropy to be maximized. If we take the entropy in the limit of large N, we can treat it with calculus as S[φ]=∫dx φ ln φ. Here, S is called a functional (which is, essentially, a function that takes another function as its argument). How can we maximize S? We will proceed using the methods of calculus of variations and Lagrange multipliers.



First we introduce three constraints. We require normalization, so that ∫dx φ = 1. This is a condition that any probability distribution must satisfy, so that the total probability over the domain of possible values is unity (since we’re asking for the probability of any possible event occurring). We require symmetry, so that the expected value of x is zero (it is equally likely to be in microstates to the left of the mean as it is to be in microstates to the right — note that this derivation is treating the one-dimensional case for simplicity). Then our constraint is ∫dx x·φ = 0. Finally, we will explicitly declare our variance to be σ², so that ∫dx x²·φ = σ².



Using Lagrange multipliers, we will instead maximize the augmented functional S[φ]=∫(φ ln φ + λ0φ + λ1xφ + λ2x²φ dx). Here, the integrand is just the sum of the integrands above, adjusted by Lagrange multipliers λk for which we’ll be solving.



Applying the Euler-Lagrange equations and solving for φ gives φ = 1/exp(1+λ0+xλ1+x²λ2). From here, our symmetry condition forces λ1=0, and evaluating the other integral conditions gives our other λ’s such that q = (1/2πσ²)½·exp(-x² / 2σ²), which is just the Normal (or Gaussian) distribution with mean 0 and variance σ². This remarkable distribution appears in many descriptions of nature, in no small part due to the Central Limit Theorem.

Maximum Entropy Distributions

Entropy is an important topic in many fields; it has very well known uses in statistical mechanics, thermodynamics, and information theory. The classical formula for entropy is Σi(pi log pi), where p=p(x) is a probability density function describing the likelihood of a possible microstate of the system, i, being assumed. But what is this probability density function? How must the likelihood of states be configured so that we observe the appropriate macrostates?

In accordance with the second law of thermodynamics, we wish for the entropy to be maximized. If we take the entropy in the limit of large N, we can treat it with calculus as S[φ]=∫dx φ ln φ. Here, S is called a functional (which is, essentially, a function that takes another function as its argument). How can we maximize S? We will proceed using the methods of calculus of variations and Lagrange multipliers.

First we introduce three constraints. We require normalization, so that ∫dx φ = 1. This is a condition that any probability distribution must satisfy, so that the total probability over the domain of possible values is unity (since we’re asking for the probability of any possible event occurring). We require symmetry, so that the expected value of x is zero (it is equally likely to be in microstates to the left of the mean as it is to be in microstates to the right — note that this derivation is treating the one-dimensional case for simplicity). Then our constraint is ∫dx x·φ = 0. Finally, we will explicitly declare our variance to be σ², so that ∫dx x²·φ = σ².

Using Lagrange multipliers, we will instead maximize the augmented functional S[φ]=∫(φ ln φ + λ0φ + λ1xφ + λ2x²φ dx). Here, the integrand is just the sum of the integrands above, adjusted by Lagrange multipliers λk for which we’ll be solving.

Applying the Euler-Lagrange equations and solving for φ gives φ = 1/exp(1+λ0+xλ1+x²λ2). From here, our symmetry condition forces λ1=0, and evaluating the other integral conditions gives our other λ’s such that q = (1/2πσ²)½·exp(-x² / 2σ²), which is just the Normal (or Gaussian) distribution with mean 0 and variance σ². This remarkable distribution appears in many descriptions of nature, in no small part due to the Central Limit Theorem.

Friday, January 13, 2012
Charge, Parity and Time Reversal (CPT) Symmetry
 From our everyday experience, it is easy to conclude that nature obeys the laws of physics with absolute consistency. However, several experiments have revealed certain cases where these laws are not the same for all particles and their antiparticles. The concept of a symmetry, in physics, means that the laws will be the same for certain types of matter. Essentially, there are three different kinds of known symmetries that exist in the universe: charge (C), parity (P), and time reversal (T). The violations of these symmetries can cause nature to behave differently. If C symmetry is violated, then the laws of physics are not the same for particles and their antiparticles. P symmetry violation implies that the laws of physics are different for particles and their mirror images (meaning the ones that spin in the opposite direction). The violation of symmetry T indicates that if you go back in time, the laws governing the particles change.
 There were two American physicists by the names of Tsunng-Dao Lee and Chen Ning Yang suggested that the weak interaction violates P symmetry.  This was proven by an experiment which was conducted with radioactive atoms of colbalt-60 that were lined up and introduced a magnetic field to insure that they are spinning in the same direction. In addition, it was also found that the weak force also does not obey symmetry C. Oddly enough, the weak force did appear to obey the combined CP symmetry. Therefore the laws of physics would be the same for a particle and it’s antiparticle with opposite spin.
Surprise, surprise! There was a slight error in the previous experiment that was just mentioned. A few years later, it was discovered that the weak force actually violates CP symmetry. Another experiment was conducted by two physicists named Cronin and Fitch. They studied the decay of neutral kaons, which are mesons that are composed of either one down quark (or antiquark) and a strange antiquark (or quark). These particles have two decay modes where one will decay much faster than the other, even though they all have identical masses. The particles with the longer lifetimes will decay into three pions (denoted with the symbol π0), however the kaon ‘species’ with the shorter lifetimes will only decay into two pions. They had a 57 foot beamline, where they only expected to see the particles with slower decay rate at the end of the beam tube. In astonishment, one out of every 500 decays where from the kaons species that had a shorter lifetime. The main conflict with seeing the short-lived mesons at the end of the beam tube is because they are traveling relavistic speeds and therefore ignoring the time dilatationthat they are supposed to undergo. Thus, the experiment has shown that the weak force causes a small CP violation that can be seen in kaon decay.

Charge, Parity and Time Reversal (CPT) Symmetry

From our everyday experience, it is easy to conclude that nature obeys the laws of physics with absolute consistency. However, several experiments have revealed certain cases where these laws are not the same for all particles and their antiparticles. The concept of a symmetry, in physics, means that the laws will be the same for certain types of matter. Essentially, there are three different kinds of known symmetries that exist in the universe: charge (C), parity (P), and time reversal (T). The violations of these symmetries can cause nature to behave differently. If C symmetry is violated, then the laws of physics are not the same for particles and their antiparticles. P symmetry violation implies that the laws of physics are different for particles and their mirror images (meaning the ones that spin in the opposite direction). The violation of symmetry T indicates that if you go back in time, the laws governing the particles change.

There were two American physicists by the names of Tsunng-Dao Lee and Chen Ning Yang suggested that the weak interaction violates P symmetry. This was proven by an experiment which was conducted with radioactive atoms of colbalt-60 that were lined up and introduced a magnetic field to insure that they are spinning in the same direction. In addition, it was also found that the weak force also does not obey symmetry C. Oddly enough, the weak force did appear to obey the combined CP symmetry. Therefore the laws of physics would be the same for a particle and it’s antiparticle with opposite spin.

Surprise, surprise! There was a slight error in the previous experiment that was just mentioned. A few years later, it was discovered that the weak force actually violates CP symmetry. Another experiment was conducted by two physicists named Cronin and Fitch. They studied the decay of neutral kaons, which are mesons that are composed of either one down quark (or antiquark) and a strange antiquark (or quark). These particles have two decay modes where one will decay much faster than the other, even though they all have identical masses. The particles with the longer lifetimes will decay into three pions (denoted with the symbol π0), however the kaon ‘species’ with the shorter lifetimes will only decay into two pions. They had a 57 foot beamline, where they only expected to see the particles with slower decay rate at the end of the beam tube. In astonishment, one out of every 500 decays where from the kaons species that had a shorter lifetime. The main conflict with seeing the short-lived mesons at the end of the beam tube is because they are traveling relavistic speeds and therefore ignoring the time dilatationthat they are supposed to undergo. Thus, the experiment has shown that the weak force causes a small CP violation that can be seen in kaon decay.

(Source: aps.org)

Monday, November 14, 2011
Variable Star Astronomy
Variable stars are stars whose brightness changes because of physical changes within the star. There exist more than 30,000 variable stars in just the Milky Way. Variable star astronomy is a popular part of astronomy because amateur astronomers play a key role. They have submitted thousands of observed data and these data are logged onto a database. American readers can find information on it on the American Association of Variable Star Observers page. 
One of such variable stars are called Cepheids. Cepheids are pulsating variable stars because they undergo  a “repetitive expansion and contraction of their outer layers” [1]. In Cepheids, the star’s period of variation (about 1-70 days) is related to its luminosity; the longer the period, the higher the luminosity. In fact, when graphed, the relationship is shown by a straight line (as can be seen on the title image). Henrietta Swan Leavitt, an American astronomer, first discovered this and understood the significance of this knowledge.  Combined with understanding of the star’s apparent magnitude (a previously written post on this subject can be found here), astronomers can use this information to find a star’s distance from Earth. Cepheids are famously known for their usefulness in finding distances to far-away galaxies and other deep sky objects. Leavitt died early from cancer but was to be nominated for the Nobel Prize in Physics by Professor Mittag-Leffler (Swedish Academy of Sciences). 
Edwin Hubble used Leavitt’s discovery to prove that the Andromeda Galaxy (M31) is not part of the Milky Way, but was able to find the distance to the Andromeda Galaxy (between 2-9 million light years away). At first his calculation was incorrect (900,000 light years) because he observed Type I (classical) Cepheid Stars. Type I Cepheid stars are brighter, newer Population I stars. Hubble later used type II Cepheids (also called W Virginis stars), which are smaller, dimmer, Population II stars, and he was able to make more accurate calculations.

To determine the star’s distance, use the inverse square law of light brightness. 


A similar type of star are RR Lyrae Variable Stars. They are smaller than Cepheids and have a much shorter period (from a few hours to a day). On the other hand, they are far more common. Likewise, they can be used to solve for distances as well. Low mass stars live longer, and thus Cepheid stars are generally younger because they are more massive. 
Both Cepheids and RR Lyrae Variable stars are referred to as standard candles: objects with known luminosity. If you’ve ever wondered how astronomers came to those enormous figures when describing how far away galaxies and stars are from us, you can now better understand why and how. 

Variable Star Astronomy

Variable stars are stars whose brightness changes because of physical changes within the star. There exist more than 30,000 variable stars in just the Milky Way. Variable star astronomy is a popular part of astronomy because amateur astronomers play a key role. They have submitted thousands of observed data and these data are logged onto a database. American readers can find information on it on the American Association of Variable Star Observers page. 

One of such variable stars are called Cepheids. Cepheids are pulsating variable stars because they undergo  a “repetitive expansion and contraction of their outer layers” [1]. In Cepheids, the star’s period of variation (about 1-70 days) is related to its luminosity; the longer the period, the higher the luminosity. In fact, when graphed, the relationship is shown by a straight line (as can be seen on the title image). Henrietta Swan Leavitt, an American astronomer, first discovered this and understood the significance of this knowledge.  Combined with understanding of the star’s apparent magnitude (a previously written post on this subject can be found here), astronomers can use this information to find a star’s distance from Earth. Cepheids are famously known for their usefulness in finding distances to far-away galaxies and other deep sky objects. Leavitt died early from cancer but was to be nominated for the Nobel Prize in Physics by Professor Mittag-Leffler (Swedish Academy of Sciences). 

Edwin Hubble used Leavitt’s discovery to prove that the Andromeda Galaxy (M31) is not part of the Milky Way, but was able to find the distance to the Andromeda Galaxy (between 2-9 million light years away). At first his calculation was incorrect (900,000 light years) because he observed Type I (classical) Cepheid Stars. Type I Cepheid stars are brighter, newer Population I stars. Hubble later used type II Cepheids (also called W Virginis stars), which are smaller, dimmer, Population II stars, and he was able to make more accurate calculations.

To determine the star’s distance, use the inverse square law of light brightness. 

A similar type of star are RR Lyrae Variable Stars. They are smaller than Cepheids and have a much shorter period (from a few hours to a day). On the other hand, they are far more common. Likewise, they can be used to solve for distances as well. Low mass stars live longer, and thus Cepheid stars are generally younger because they are more massive. 

Both Cepheids and RR Lyrae Variable stars are referred to as standard candles: objects with known luminosity. If you’ve ever wondered how astronomers came to those enormous figures when describing how far away galaxies and stars are from us, you can now better understand why and how. 

Saturday, October 29, 2011

Anonymous asked: How can I be a writer on sayitwithscience?

Hey, there!

At this moment, we’re not sure if we can immediately recruit someone new to the team. There are a few things, however, that you can do to show us your interest:

  • Email us! Message us (non anonymously)! Let us know who you are! Tell us about your science interests!
  • Write posts you would like to submit. You may then submit them to us via the submission box! If you let us know beforehand, we can guide you through the process. Remember: they must be original work and must include links to any sources you use.
  • Provide general feedback and comments.


If things end up going great, you may land yourself a position on the team! Thank you for your interest! This message put a smile on our faces. (:

-Say It With Science

Friday, October 28, 2011
The Virial Theorem



In the transition from classical to statistical mechanics, are there familiar quantities that remain constant? The Virial theorem defines a law for how the total kinetic energy of a system behaves under the right conditions, and is equally valid for a one particle system or a mole of particles.



Rudolf Clausius, the man responsible for the first mathematical treatment of entropy and for one of the classic statements of the second law of thermodynamics, defined a quantity G (now called the Virial of Clausius):



G ≡ Σi(pi · ri)



Where the sum is taken over all the particles in a system. You may want to satisfy yourself (it’s a short derivation) that taking the time derivative gives:



dG/dt = 2T + Σi(Fi · ri)



Where T is the total kinetic energy of the system (Σ  ½mv2) and dp/dt = F. Now for the theorem: the Virial Theorem states that if the time average of dG/dt is zero, then the following holds (we use angle brackets ⟨·⟩ to denote time averages):



2⟨T⟩ = - Σi(Fi · ri)



Which may not be surprising. If, however, all the forces can be written as power laws so that the potential is V=arn (with r the inter-particle separation), then



2⟨T⟩ = n⟨V⟩



Which is pretty good to know! (Here, V is the total kinetic energy of the particles in the system, not the potential function V=arn.) For an inverse square law (like the gravitational or Coulomb forces), F∝1/r2 ⇒ V∝1/r, so 2⟨T⟩ = -⟨V⟩.



Try it out on a simple harmonic oscillator (like a mass on a spring with no gravity) to see for yourself. The potential V ∝ kx², so it should be the case that the time average of the potential energy is equal to the time average of the kinetic energy (n=2 matches the coefficient in 2⟨T⟩). Indeed, if x = A sin( √[k/m] · t ), then v = A√[k/m] cos( √[k/m] · t ); then x2 ∝ sin² and v² ∝ cos², and the time averages (over an integral number of periods) of sine squared and cosine squared are both ½. Thus the Virial theorem reduces to



2 · ½m·(A²k/2m) = 2 · ½k(A²/2)



Which is easily verified. This doesn’t tell us much about the simple harmonic oscillator; in fact, we had to find the equations of motion before we could even use the theorem! (Try plugging in the force term F=-kx in the first form of the Virial theorem, without assuming that the potential is polynomial, and verify that the result is the same). But the theorem scales to much larger systems where finding the equations of motion is impossible (unless you want to solve an Avogadro’s number of differential equations!), and just knowing the potential energy of particle interactions in such systems can tell us a lot about the total energy or temperature of the ensemble.

The Virial Theorem

In the transition from classical to statistical mechanics, are there familiar quantities that remain constant? The Virial theorem defines a law for how the total kinetic energy of a system behaves under the right conditions, and is equally valid for a one particle system or a mole of particles.

Rudolf Clausius, the man responsible for the first mathematical treatment of entropy and for one of the classic statements of the second law of thermodynamics, defined a quantity G (now called the Virial of Clausius):

G ≡ Σi(pi · ri)

Where the sum is taken over all the particles in a system. You may want to satisfy yourself (it’s a short derivation) that taking the time derivative gives:

dG/dt = 2T + Σi(Fi · ri)

Where T is the total kinetic energy of the system (Σ  ½mv2) and dp/dt = F. Now for the theorem: the Virial Theorem states that if the time average of dG/dt is zero, then the following holds (we use angle brackets ⟨·⟩ to denote time averages):

2⟨T⟩ = - Σi(Fi · ri)

Which may not be surprising. If, however, all the forces can be written as power laws so that the potential is V=arn (with r the inter-particle separation), then

2⟨T⟩ = n⟨V⟩

Which is pretty good to know! (Here, V is the total kinetic energy of the particles in the system, not the potential function V=arn.) For an inverse square law (like the gravitational or Coulomb forces), F∝1/r2 ⇒ V∝1/r, so 2⟨T⟩ = -⟨V⟩.

Try it out on a simple harmonic oscillator (like a mass on a spring with no gravity) to see for yourself. The potential Vkx², so it should be the case that the time average of the potential energy is equal to the time average of the kinetic energy (n=2 matches the coefficient in 2⟨T⟩). Indeed, if x = A sin( √[k/m] · t ), then v = A√[k/m] cos( √[k/m] · t ); then x2 ∝ sin² and v² ∝ cos², and the time averages (over an integral number of periods) of sine squared and cosine squared are both ½. Thus the Virial theorem reduces to

2 · ½m·(A²k/2m) = 2 · ½k(A²/2)

Which is easily verified. This doesn’t tell us much about the simple harmonic oscillator; in fact, we had to find the equations of motion before we could even use the theorem! (Try plugging in the force term F=-kx in the first form of the Virial theorem, without assuming that the potential is polynomial, and verify that the result is the same). But the theorem scales to much larger systems where finding the equations of motion is impossible (unless you want to solve an Avogadro’s number of differential equations!), and just knowing the potential energy of particle interactions in such systems can tell us a lot about the total energy or temperature of the ensemble.

Wednesday, October 12, 2011
Hypercubes
What is a hypercube (also referred to as a tesseract) you say! Well, let’s start with what you know already. We know what a cube is, it’s a box! But how else could you describe a cube? A cube is 3 dimensional. Its 2 dimensional cousin is a square. 
A hypercube is just to a cube what a cube is to a square. A hypercube is 4 dimensional! (Actually— to clarify, hypercubes can refer to cubes of all dimensions. “Normal” cubes are 3 dimensional, squares are 2 dimensional “cubes, etc. This is because a hypercube is an n-dimensional figure whose edges are aligned in each of the space’s dimensions, perpendicular to each other and of the same length. A tesseract is specifically a 4-d cube). 

[source]
Another way to think about this can be found here:

Start with a point. Make a copy of the point, and move it some distance away. Connect these points. We now have a segment. Make a copy of the segment, and move it away from the first segment in a new (orthogonal) direction. Connect corresponding points. We now have an ordinary square. Make a copy of the square, and move it in a new (orthogonal) direction. Connect corresponding points. We now have a cube. Make a copy and move it in a new (orthogonal, fourth) direction. Connect corresponding points. This is the tesseract.

If a tesseract were to enter our world, we would only see it in our three dimensions, meaning we would see forms of a cube doing funny things and spinning on its axes. This would be referred to as a cross-section of the tesseract. Similarly, if we as 3-dimensional bodies were to enter a 2-dimensional world, its 2-dimension citizens would “observe” us as 2-dimensional cross objects as well! It would only be possible for them to see cross-sections of us.
Why would this be significant? Generally, in math, we work with multiple dimensions very often. While it may seem as though a mathematican must then work with 3 dimensions often, it is not necessarily true. The mathematician deals with these dimensions only mathematically. These dimensions do not have a value because they do not correspond to anything in reality; 3 dimensions are nothing ordinary nor special. 
Yet, through modern mathematics and physics, researchers consider the existence of other (spatial) dimensions.  What might be an example of such a theory? String theory is a model of the universe which supposes there may be many more than the usual 4 spacetime dimensions (3 for space, 1 for time). Perhaps understanding these dimensions, though seemingly impossible to visualize, will come in hand. 
Carl Sagan also explains what a tesseract is. 
Image: Peter Forakis, Hyper-Cube, 1967, Walker Art Center, Minneapolis

Hypercubes

What is a hypercube (also referred to as a tesseract) you say! Well, let’s start with what you know already. We know what a cube is, it’s a box! But how else could you describe a cube? A cube is 3 dimensional. Its 2 dimensional cousin is a square. 

A hypercube is just to a cube what a cube is to a square. A hypercube is 4 dimensional! (Actually— to clarify, hypercubes can refer to cubes of all dimensions. “Normal” cubes are 3 dimensional, squares are 2 dimensional “cubes, etc. This is because a hypercube is an n-dimensional figure whose edges are aligned in each of the space’s dimensions, perpendicular to each other and of the same length. A tesseract is specifically a 4-d cube). 

[source]

Another way to think about this can be found here:

Start with a point. Make a copy of the point, and move it some distance away. Connect these points. We now have a segment. Make a copy of the segment, and move it away from the first segment in a new (orthogonal) direction. Connect corresponding points. We now have an ordinary square. Make a copy of the square, and move it in a new (orthogonal) direction. Connect corresponding points. We now have a cube. Make a copy and move it in a new (orthogonal, fourth) direction. Connect corresponding points. This is the tesseract.

If a tesseract were to enter our world, we would only see it in our three dimensions, meaning we would see forms of a cube doing funny things and spinning on its axes. This would be referred to as a cross-section of the tesseract. Similarly, if we as 3-dimensional bodies were to enter a 2-dimensional world, its 2-dimension citizens would “observe” us as 2-dimensional cross objects as well! It would only be possible for them to see cross-sections of us.

Why would this be significant? Generally, in math, we work with multiple dimensions very often. While it may seem as though a mathematican must then work with 3 dimensions often, it is not necessarily true. The mathematician deals with these dimensions only mathematically. These dimensions do not have a value because they do not correspond to anything in reality; 3 dimensions are nothing ordinary nor special. 

Yet, through modern mathematics and physics, researchers consider the existence of other (spatial) dimensions.  What might be an example of such a theory? String theory is a model of the universe which supposes there may be many more than the usual 4 spacetime dimensions (3 for space, 1 for time). Perhaps understanding these dimensions, though seemingly impossible to visualize, will come in hand. 

Carl Sagan also explains what a tesseract is

Image: Peter Forakis, Hyper-Cube, 1967, Walker Art Center, Minneapolis